Đường chéo hình vuông là hai đường thẳng vuông góc và giao nhau tại trung điểm của mỗi đường. Vậy công thức tính đường chéo hình vuông là gì? Mời các bạn lớp 8, lớp 9 cùng theo dõi bài viết dưới đây nhé.
Bạn đang xem : Công thức tính đường chéo hình vuông lớp 5
Nội dung chính
- 1 1. Đường chéo hình vuông là gì?
- 2 2. Tính chất đường chéo hình vuông
- 3 3. Dấu hiệu nhận biết hình vuông
- 4 4. Công thức tính đường chéo hình vuông
- 5 5. Ví dụ cách tính đường chéo hình vuông
- 6 6. Bài tập tính đường chéo hình vuông
- 7 1. Đường chéo hình vuông là gì?
- 8 2. Tính chất đường chéo hình vuông
- 9 3. Dấu hiệu nhận biết hình vuông
- 10 4. Công thức tính đường chéo hình vuông
- 11 5. Ví dụ cách tính đường chéo hình vuông
- 12 6. Bài tập tính đường chéo hình vuông
- 13 Share this:
1. Đường chéo hình vuông là gì?
Hình tứ giác có 4 góc vuông, 4 cạnh bằng với nhau là hình vuông
Bạn đang đọc: Công Thức Tính Đường Chéo Hình Vuông Lớp 5, Cách Tính Đường Chéo Hình Vuông Khi Biết Cạnh
Đường chéo hình vuông là 2 đường thẳng vuông góc và giao nhau tại trung điểm của mỗi đường.
2. Tính chất đường chéo hình vuông
Tính chất của đường chéo hình vuông đa phần biểu lộ qua công thức tính của nó. Dựa vào đặc thù của hình vuông ta thấy đường chéo hình vuông có 2 đặc thù : Giao điểm của 2 đường chéo trong hình vuông chính là tâm của đường tròn nội tiếp và ngoại tiếp hình vuông. 1 đường chéo hình vuông sẽ chia hình vuông thành 2 phần có diện tích bằng nhau, và 2 hình đó là tam giác vuông cân
3. Dấu hiệu nhận biết hình vuông
Hình chữ nhật có hai cạnh kề bằng nhau Hai đường chéo của hình chữ nhật vuông góc với nhau là hình vuông Hình thoi có 1 góc vuông Hình thoi có hai đường chéo bằng nhau
4. Công thức tính đường chéo hình vuông
Giao điểm của 2 đường chéo trong hình vuông chính là tâm của đường tròn nội tiếp và ngoại tiếp hình vuông. 1 đường chéo hình vuông sẽ chia hình vuông thành 2 phần có diện tích quy hoạnh bằng nhau, và 2 hình đó là tam giác vuông cânHình chữ nhật có hai cạnh kề bằng nhau Hai đường chéo của hình chữ nhật vuông góc với nhau là hình vuông Hình thoi có 1 góc vuông Hình thoi có hai đường chéo bằng nhauTrong một hình vuông có 2 đường chéo. Theo đặc thù của hình vuông, hai đường chéo hình vuông bằng nhau và một đường chéo hình vuông sẽ chia hình vuông thành hai phần có diện tích quy hoạnh bằng nhau chính là 2 tam giác vuông cân. Như vậy thì đường chéo hình vuông chính là cạnh huyền của 2 tam giác vuông cân đó. Để tính đường chéo hình vuông ta vận dụng định lý Pi-ta-go trong tam giác vuông. Gọi cạnh hình vuông là a, đường chéo là b ta có :
Áp dụng định lý Pytago: b =
5. Ví dụ cách tính đường chéo hình vuông
a ) Một hình vuông có cạnh bằng 3 cm. Đường chéo của hình vuông đó bằng : 6 cm, √ 18 cm, 5 cm, hay 4 cm ? b ) Đường chéo của một hình vuông bằng 2 dm. Cạnh của hình vuông đó bằng : 1 dm, 3/2 dm, √ 2 dm hay 4/3 dm ?
Bài giải:
a ) Áp dụng định lí Pi-ta-go trong hình vuông ABC, ta có : AC² = AB² + BC² = 3 ² + 3 ² = 18 => AC = √ 18 cm Vậy đường chéo của hình vuông bằng √ 18 cm. b ) Tương tự, cũng vận dụng định lí Py-ta-go vào tam giác vuông ABC, nhưng bài này cho độ dài đường chéo, tức AC = 2 dm, tính cạnh AB. Ta có : AC² = AB² + BC² = 2AB ( vì AB = BC ) => AB² =
6. Bài tập tính đường chéo hình vuông
Bài 1. Cho hình vuông ABCD có cạnh a = 5cm, tính đường chéo AC, BD?
Bài 2. Cho hình vuông ABCD có đường chéo bằng 10√2 cm, tính độ dài các cạnh của hình vuông?
Bài 3. Cho tam giác vuông cân ABC tại A, có cạnh AC bằng 7cm. Vẽ hình vuông ABCD. Tính độ dài đường chéo của hình vuông ABCD mới vẽ.
Xem thêm: Tranh Tô Màu Bông Hoa 5 Cánh Cho Bé ❤️ Hình Hoa Đẹp, Tô Màu Bông Hoa
Đường chéo hình vuông là hai đường thẳng vuông góc và giao nhau tại trung điểm của mỗi đường. Vậy công thức tính đường chéo hình vuông là gì? Mời các bạn lớp 8, lớp 9 cùng theo dõi bài viết dưới đây nhé.
1. Đường chéo hình vuông là gì?
Hình tứ giác có 4 góc vuông, 4 cạnh bằng với nhau là hình vuông Đường chéo hình vuông là 2 đường thẳng vuông góc và giao nhau tại trung điểm của mỗi đường.
2. Tính chất đường chéo hình vuông
Tính chất của đường chéo hình vuông hầu hết bộc lộ qua công thức tính của nó. Dựa vào đặc thù của hình vuông ta thấy đường chéo hình vuông có 2 đặc thù : Giao điểm của 2 đường chéo trong hình vuông chính là tâm của đường tròn nội tiếp và ngoại tiếp hình vuông. 1 đường chéo hình vuông sẽ chia hình vuông thành 2 phần có diện tích bằng nhau, và 2 hình đó là tam giác vuông cân
3. Dấu hiệu nhận biết hình vuông
Hình chữ nhật có hai cạnh kề bằng nhau Hai đường chéo của hình chữ nhật vuông góc với nhau là hình vuông Hình thoi có 1 góc vuông Hình thoi có hai đường chéo bằng nhau
4. Công thức tính đường chéo hình vuông
Giao điểm của 2 đường chéo trong hình vuông chính là tâm của đường tròn nội tiếp và ngoại tiếp hình vuông. 1 đường chéo hình vuông sẽ chia hình vuông thành 2 phần có diện tích quy hoạnh bằng nhau, và 2 hình đó là tam giác vuông cânHình chữ nhật có hai cạnh kề bằng nhau Hai đường chéo của hình chữ nhật vuông góc với nhau là hình vuông Hình thoi có 1 góc vuông Hình thoi có hai đường chéo bằng nhauTrong một hình vuông có 2 đường chéo. Theo đặc thù của hình vuông, hai đường chéo hình vuông bằng nhau và một đường chéo hình vuông sẽ chia hình vuông thành hai phần có diện tích quy hoạnh bằng nhau chính là 2 tam giác vuông cân. Như vậy thì đường chéo hình vuông chính là cạnh huyền của 2 tam giác vuông cân đó. Để tính đường chéo hình vuông ta vận dụng định lý Pi-ta-go trong tam giác vuông. Gọi cạnh hình vuông là a, đường chéo là b ta có :
Áp dụng định lý Pytago: b =
5. Ví dụ cách tính đường chéo hình vuông
a ) Một hình vuông có cạnh bằng 3 cm. Đường chéo của hình vuông đó bằng : 6 cm, √ 18 cm, 5 cm, hay 4 cm ? b ) Đường chéo của một hình vuông bằng 2 dm. Cạnh của hình vuông đó bằng : 1 dm, 3/2 dm, √ 2 dm hay 4/3 dm ?
Bài giải:
a ) Áp dụng định lí Pi-ta-go trong hình vuông ABC, ta có : AC² = AB² + BC² = 3 ² + 3 ² = 18 => AC = √ 18 cm Vậy đường chéo của hình vuông bằng √ 18 cm. b ) Tương tự, cũng vận dụng định lí Py-ta-go vào tam giác vuông ABC, nhưng bài này cho độ dài đường chéo, tức AC = 2 dm, tính cạnh AB. Ta có : AC² = AB² + BC² = 2AB ( vì AB = BC ) => AB² ==> AB = √ 2
Vậy cạnh hình vuông bằng √2dm.
6. Bài tập tính đường chéo hình vuông
Bài 1. Cho hình vuông ABCD có cạnh a = 5cm, tính đường chéo AC, BD?
Bài 2. Cho hình vuông ABCD có đường chéo bằng 10√2 cm, tính độ dài các cạnh của hình vuông?
Bài 3. Cho tam giác vuông cân ABC tại A, có cạnh AC bằng 7cm. Vẽ hình vuông ABCD. Tính độ dài đường chéo của hình vuông ABCD mới vẽ.
Source: http://139.180.218.5
Category: tản mạn