Trong hình học không gian Oxyz thường có dạng toán tìm khoảng cách từ một điểm đến một đường thẳng cho trước. Đây là một dạng toán khá đơn giản và phổ biến mà chỉ cần nhớ chính xác công thức và áp dụng vào giải toán dễ dàng. Hãy theo dõi bài viết này để tìm hiểu công thức tính khoảng cách từ 1 điểm đến đường thẳng nhé!

1. Điểm là gì?

Điểm trong khái niệm toán học đơn thuần được thừa nhận như một khái niệm xuất phát để kiến thiết xây dựng môn hình học, được tưởng tượng là một thứ rất nhỏ bé, không có size hay size bằng không .

2. Đường thẳng là gì?

Đường thẳng là một đường dài vô hạn, mỏng dính vô cùng và thẳng tuyệt đối .

3. Khoảng cách từ điểm đến đường thẳng trong không gian là gì?

Trong khoảng trống cho điểm A và đường thẳng Δ bất kể. Gọi điểm B là hình chiếu của điểm A lên đường thẳng Δ. Khi đó độ dài đoạn thẳng AB chính là khoảng cách từ điểm A lên đường thẳng Δ .

Khoảng cách từ điểm đến đường thẳng trong không gian

Nói cách khác, khoảng cách từ điểm đến đường thẳng trong khoảng trống là khoảng cách giữa điểm và hình chiếu của nó trên đường thẳng. Ký hiệu là d ( A, Δ ) .

4. Công thức tính khoảng cách từ điểm đến đường thẳng

Công thức tính khoảng cách từ điểm đến đường thẳngCông thức tính khoảng cách từ điểm đến đường thẳng

5. Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướngCách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Ví dụ:

Ví dụ về tính khoảng cách từ điểm đến đường thẳng bằng tích có hướngVí dụ về tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Lời giải:

Lời giải của ví dụ trênLời giải của ví dụ trên

6. Cách tính khoảng cách giữa 2 điểm

Cách tính khoảng cách giữa 2 điểmCách tính khoảng cách giữa 2 điểm

Ví dụ: Trong mặt phẳng Oxy, cho điểm A (1;2) và điểm B(-3;4). Tính độ dài đoạn thẳng AB.

Lời giải:

Lời giải của ví dụ trênLời giải của ví dụ trên

7. Bài tập tính khoảng cách từ một điểm đến một đường thẳng

Bài 1: Cho một đường thẳng có phương trình có dạng Δ:  x + 3y + 1 = 0. Hãy tính khoảng cách từ điểm Q (2;1) tới đường thẳng Δ.

Lời giải:

Lời giải của bài tập 1Lời giải của bài tập 1

Bài 2:

Bài tập 2Bài tập 2

Lời giải:

Lời giải của bài tập 2Lời giải của bài tập 2

Bài 3:

Bài tập 3Bài tập 3

Lời giải:

Lời giải của bài tập 3Lời giải của bài tập 3

Bài 4: Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng (d): 8x + 6y + 100 = 0. Tính bán kính R của đường tròn (C).

Lời giải:

Lời giải của bài tập 4Lời giải của bài tập 4

Bài 5: Tính Khoảng cách từ giao điểm của hai đường thẳng (a): x  3y + 4 = 0 và (b): 2x + 3y  1 = 0 đến đường thẳng : 3x + y + 16 = 0.

Lời giải:

Lời giải của bài tập 5Lời giải của bài tập 5

Bài 6: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC?

Lời giải:

Lời giải của bài tập 6Lời giải của bài tập 6

Bài 7:

Bài tập 7Bài tập 7

Lời giải:

Lời giải của bài tập 7Lời giải của bài tập 7

8. Một số lưu ý về tính khoảng cách từ điểm đến đường thẳng

Cần xác lập được khái niệm khoảng cách từ điểm đến đường thẳng là như thế nào .Đưa phương trình đường thẳng về dạng tổng quát trước khi vận dụng công thức tính khoảng cách từ điểm đến đường thẳng .

Nên sử dụng máy tính cầm tay để có thể hỗ trợ tính khoảng cách từ điểm đến đường thẳng một cách nhanh chóng và chính xác nhất.

Sử dụng máy tính cầm tay để tính khoảng cách từ điểm đến đường thẳng nhanh chóngSử dụng máy tính cầm tay để tính khoảng cách từ điểm đến đường thẳng nhanh gọnXem thêmTagsĐời sống Hỏi đáp Wiki – Thuật ngữ

Video liên quan

Source: http://139.180.218.5
Category: tản mạn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *