x2 + x + = 0
Nội dung chính
Hướng dẫn giải phương trình bậc hai
Điền các số tương ứng với các hệ số a, b, c của phương trình bậc hai vào các ô trên để tiến hành tính toán phương trình bậc hai tự động
Lưu ý : phần điền vào phải là số học, không phải văn bản. Sử dụng dấu chấm “. ” trên bàn phím tương ứng với dấu phẩy “, ” trong toán học. Ví dụ : 7,8 khi nhập sẽ là 7.8
Ôn lại lý thuyết
Định nghĩa
Phương trình bậc hai là phương trình có dạng
USD USD ax ^ 2 + bx + c = 0 $ $
trong đó x là ẩn; a, b, c là những số cho trước gọi là những hệ số và \(a \neq 0\).
Ví dụ : 2×2 – 8 x + 1 = 0
Công thức nghiệm
Biến đổi phương trình tổng quát
\ begin { equation } ax ^ 2 + bx + c = 0 \ label { eq : 1 } \ end { equation }
theo những bước sau :
- Chuyển hạng tử tự do sang bước phải: \(ax^2 + bx = -c\)
- Vì \(a \neq 0\), chia hai vế cho hệ số a, ta có: \(x^2 + \frac{b}{a}x = -\frac{c}{a}\)
- Tách hạng tử \(\frac{b}{a}x\) thành \(2.x.\frac{b}{2a}\) và thêm vào hai vế cùng một biểu thức để vế trái thành bình phương của một biểu thức:
USD USD x ^ 2 + 2. x. \ frac { b } { 2 a } + ( \ frac { b } { 2 a } ) ^ 2 = ( \ frac { b } { 2 a } ) ^ 2 – \ frac { c } { a } $ $
hay
\begin{equation}(x + \frac{b}{2a}) = \frac{b^2 – 4ac}{4a^2}\label{eq:2}\end{equation}
Xem thêm: Tam giác.
Người ta ký hiệu \ ( \ Delta = b ^ 2 – 4 ac \ )
và gọi nó là biệt thức của phương trình ( \ ( \ Delta \ ) là một vần âm Hy Lạp, đọc là đenta ) .
Bây giờ dùng phương trình \ eqref { eq : 2 }, ta xét mọi trường hợp hoàn toàn có thể xảy ra so với \ ( \ Delta \ ) để suy ra khi nào thì phương trình có nghiệm và viết nghiệm nếu có .
- Nếu \(\Delta\) > 0 thì phương trình có hai nghiệm phân biệt:
USD USD x _1 = \ frac { – b + \ sqrt { \ Delta } } { 2 a }, x _2 = \ frac { – b – \ sqrt { \ Delta } } { 2 a } $ $
- Nếu \(\Delta\) = 0 thì phương trình có nghiệm kép
USD USD x _1 = x _2 = – \ frac { b } { 2 a } $ $
- Nếu \(\Delta\)
Nguồn SGK Toán 9 tập 2, chương IV, phần USD 4
Có thể bạn chưa biết
Vào thiên niên kỉ thứ hai trước Công nguyên, người Babylon đã biết cách giải phương trình bậc hai. Các nhà toán học cổ Hy Lạp đã giải phương trình này bằng hình học. Nhiều bài toán dẫn tới phương trình bậc hai được nói đến trong 1 số ít tài liệu toán học thời cổ .
Ứng dụng
Có thể tìm hai số khi biết tổng và tích của chúng bằng phương trình bậc hai và định lý Vi-ét.
Ví dụ : Tìm hai số khi biết tổng của chúng bằng 27 và tích của chúng bằng 180 .
Giải : Hai số cần tìm là nghiệm của phương trình bậc hai x2 – 27 x + 180 = 0
Tiến hành giải phương trình này bằng công cụ phía trên ta có x1 = 15, x2 = 12. Vậy hai số cần tìm là 15 và 12
Source: http://139.180.218.5
Category: tản mạn