27
– Muốn cộng hai phân số cùng mẫu số ta cộng hai tử số với nhau và giữ nguyên
mẫu số.
– Khi đổi chỗ hai phân số trong một tổng thì tổng của chúng không thay đổi.
* Dạng bài
1. Tính:
4 3
6 6
2. Hai ô tô cùng chuyển gạo ở một kho, ô tô thứ nhất chuyển được…số gạo trong
kho, ô tô thứ hai chuyển được …số gạo trong kho. Hỏi cả hai ô tô chuyển được bao
nhiêu phần số gạp trong kho?
b. Phép cộng hai phân số khác mẫu số
* Mục tiêu:
– Nhận biết phép cộng hai phân số khác mẫu số.
– Biết cộng hai phân số khác mẫu số.
* HS cần nắm quy tắc
Muốn cộng hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi cộng
hai phân số đó.
* Dạng bài
1. Tính:
4 12
6 8
2. Một xe ô tô giờ đầu chạy được …quãng đường, giờ thứ hai chạy được…quãng
đường. Hỏi sau hai giờ ô tô đó chạy được bào nhiêu phần của quãng đường?
* Ngoài ra qua các bài luyện tập chương trình còn có các bài tập dạng vận dụng các
tính chất đã học vào phân số.
Khi cộng một tổng hai phân số với phân số thứ ba, ta có thể cộng phân số thứ nhất
với tổng của phân số thứ hai và phấn số thứ ba.
2.2.3.2. Phép trừ phân số
a. Phép trừ hai phân số cùng mẫu số
* Mục tiêu:
– Nhận biết phép trừ hai phân số cùng mẫu số.
– Biết cách trừ hai phân số cùng mấu số.
* HS cần nắm các qui tắc
28
Muốn trừ hai phân số cùng mẫu số, ta trừ tử số của phân số thứ nhất cho tử số
của phân số thứ hai và giữ nguyên mẫu số.
* Dạng bài
1. Tính:
4 2
6 6
2. Tại hội khỏe Phù Đổng toàn quốc lần thứ VI năm 2004 số huy chương vàng của
tỉnh Đồng Tháp bằng…tổng số huy chương của đoàn đã giành được, còn lại là huy
chương bạc và huy chương đồng. Hỏi số huy chương bạc và đồng của đoàn Đồng
Tháp bằng bao nhiêu phần tổng số huy chương mà đoàn đã giành được?
b. Phép trừ hai phân số khác mẫu số
* Mục tiêu:
– Nhận biết cách trừ hai phân số khác mẫu số.
– Biết thực hiện phép trừ hai phân số khác mẫu số.
* HS cần nắm các quy tắc
Muốn trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi trừ tử số
thứ nhất cho tử số của phân số thứ hai, giữ nguyên mẫu số.
* Dạng bài
1. Tính:
5 3
2 4
2. Trong một công viên có …diện tích đã trồng hoa và cây xanh, trong đó …diện
tích đã trồng hoa. Hỏi diện tích để trồng cây xanh là bao nhiêu phần công viên?
2.2.3.3. Phép nhân phân số
* Mục tiêu
– Nhận biết ý nghĩa của phép nhân phân số.
– Biết thực hiện phép nhân hai phân số.
* HS cần nắm quy tắc
Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
* Dạng bài
1. Tính:
5 3
2 4
29
2. Một hình chữ nhật có chiều dài…m và chiều rộng …m. Tính diện tích hình chữ
nhật đó.
* Ngoài ra qua bài luyện tập còn kết hợp tính chất giao hoán qua các bài tập.
– Tính chất kết hợp: Khi đổi chỗ các phân số trong một tích thì tích của chúng
không thay đổi.
– Tính chất kết hợp: Khi nhân một tích hai phân số với phân số thứ ba ta có thể
nhân phân số thứ nhất với tích của phân số thứ hai và phân số thứ ba.
– Tính chất phân số của phép nhân đối với phép cộng. Khi nhân một tổng hai
phân số với phân số thứ ba, ta có thể nhân từng phân số của tổng với phân số thứ ba
rồi cộng các kết quả lại với nhau.
2.2.3.4. Tìm phân số của một số
* Mục tiêu
Biết cách giải bài toán dạng “Tìm phân số của một số”.
* HS cần nắm:
Muốn tìm
của số c ta lấy số c nhân với
.
* Dạng bài:
9
8
Lớp 4A có 16 HS nam và số HS nữ bằng HS nam. Hỏi lớp 4A có bao nhiêu HS
nữ?
2.2.3.5. Phép chia phân số
* Mục tiêu:
Biết thực hiện phép chia phân số.
* HS cần nắm:
Muốn chia hai phân số ta lấy phân số thứ nhất nhân với nghịch đảo của phân số
thứ hai.
* Dạng bài:
a. Viết phân số đảo ngược của mỗi phân số sau:
b. Tính:
5 3
:
2 4
5 3 4
; ;
2 4 7
30
c. Một hình chữ nhật có diện tích
2 2
3
m chiều rộng bằng m. Tính chiều dài của
3
4
hình chữ nhật đó?
2.3. Những bài toán có thể giải bằng nhiều cách và cách giải
2.3.1. Rút gọn phân số
Ví dụ 1: Rút gọn phân số
204
318
Phân tích: Dựa vào các dấu hiệu chia hết ta thấy cả tử số và mẫu số đều chia hết cho
2, 3 nên ta có thể rút gọn từng bước.
Đầu tiên rút gọn cho 2 hoặc 3 sau đó rút gọn tiếp cho đến tối giản.
Giải:
204 204 : 2 102 102 : 3 34
318 318 : 2 159 159 : 3 53
Tuy nhiên, bài này ta có thể khuyên khích học sinh giải cách khác nhanh hơn.
Dựa vào dấu hiệu chia hết ta thấy cả tử số và mẫu số đều chia hết cho 2 và 3 nên
sẽ chia hết cho tích của chúng là 6.
Vậy ta có thể làm cách sau:
Giải:
204 204 : 6 34
318 318 : 6 53
Ví dụ 2: Rút gọn phân số
75
300
Phân tích: Dựa vào dấu hiệu chia hết ta thấy cả tử số và mẫu số đều chia hết cho
5. Vậy trước hết ta rút gọn cho 5 sau đó ta rút gọn tiếp.
Giải:
75
75 : 5 15 15 : 3 5
5:5 1
300 300 : 5 60 60 : 3 20 20 : 5 4
Cách làm trên đúng nhưng dài dòng nhiều bước. Ta có thể hướng dẫn học sinh
làm cách nhanh hơn.
Ta thấy mẫu số chia hết cho tử số vậy ta làm như sau:
Giải:
75
75 : 75 1
300 300 : 75 4
Ví dụ 3: Rút gọn phân số
34
51
31
Phân tích: Ta thấy 34 = 17 2; 51 = 17 3. Vậy cả tử số và mẫu số đều chia hết
cho 17. Ta làm như sau:
Giải:
34 34 : 17 2
51 51: 17 3
Ví dụ 4: Rút gọn phân số
119
153
Với dạng bài này, học sinh chỉ dựa vào dấu hiệu chia hết đã học ở chương trình
Tiểu học thì thấy tử số và mẫu số không cùng chia hết cho 2, 3, 5, 9 và học sinh
cũng khó có thể nhận thấy được tử số và mẫu số cùng chia hết cho số nào > 1. Vậy
ta có thể hướng dẫn các em như sau:
Phân tích: Dựa vào dấu hiệu chia hết ta thấy mẫu sốchia hết cho 9 ta có: 153 : 9 =
17
Vậy 153 :17 thì chia 119 cho 17 ta có: 119 : 17 = 7
Ta có bài giải sau:
Giải:
119 119 : 17 7
153 153 : 17 9
Ví dụ 5: Rút gọn phân số
322
345
Cũng như trên dạng bài này học sinh Tiểu học cũng khó có thể nhận thấy được cả
tử số và mẫu số cùng chia hết cho số nào.
Ta có thể hướng dẫn các em tìm đặc điểm sau:
Phân tích: Dựa vào dấu hiệu chia hết ta thấy mẫu số :3 và 5 nên mẫu số :15, thực
hiện phép chia ta có: 345 : 15 = 23
Vậy mẫu sốchia hết cho 23 còn tử số không chia hết cho 15
Vậy thử chia tử số cho 23 ta có: 322 : 23 = 14
Ta có lời giải sau:
Giải:
322 322 : 23 14
345 345 : 23 15
Ví dụ 6: Rút gọn phân số
7777
9999
Phân tích: Ta thấy tử số là số có 4 chữ số và được viết bởi 4 chữ số 7, khi chia tử
số cho 7 được 1111. Mẫu số cũng là số có 4 chữ số và được viết bởi 4 chữ số 9. Khi
32
chia mẫu số cho 9 cũng được 1111, vậy cả tử số và mẫu số đều
1111. vậy ta có
lời giải sau:
Giải:
7777 7777 : 1111 7
9999 9999 : 1111 9
Ví dụ 7:Rút gọn phân số
131313
151515
Phân tích: Ta thấy tử số là số có 6 chữ số và được viết lặp lại số 13 là 3 lần. Ta
lấy tử số chia cho 13 ta có: 131313 : 13 =10101. mẫu số cũng là số có 6 chữ số và
được viết lặp lại số 15 cũng 3 lần. Lấy mẫu số chia cho 15 ta có: 151515 : 15 =
10101
Vậy cả tử số và mẫu số đều 10101
Giải:
131313 131313: 10101 13
151515 151515: 10101 15
Ví dụ 8:Rút gọn phân số
121
165
Phân tích: Xét các chữ số của tử số và mẫu số ta thấy cả tử số và mẫu số đều có
tổng các chữ số ở hàng trăm và hàng đơn vị bằng chữ số hàng chục. Theo quy tắc
nhân nhẩm với 11 ta thấy:121 = 11 11; 165 = 11 15
Vậy phân số trên có thể rút gọn cho 11.
Giải:
121 121: 11 11
165 165 : 11 15
Khi rút gọn phân số dù bài dễ hay khó, dù bài cơ bản hay nâng cao, phải chú ý
nhận dạng bài, biết sử dụng kiến thức về dấu hiệu chia hết, tìm ra đặc điểm của tử
số và mẫu số để rút gọn.
2.3.2. Quy đồng mẫu số
Trường hợp 1: Hai mẫu số không cùng chia hết số nào khác 1. Thì mẫu số chung
nhỏ nhất chính là tích của hai mẫu số.
Ví dụ 1: Quy đồng hai phân số:
MSCNN: 5 11= 55
7 7 11 77 8 8 5 40
;
5 5 11 55 11 11 5 55
7
8
và
5
11
33
Vậy quy đồng mẫu số hai phân số
7
8
77
40
và
được hai phân số:
và
5
11
55
55
Trường hợp 2: Hai mẫu số không chia hết cho nhau nhưng cùng chia hết cho số
a khác 0 và 1. Thì mẫu số chung nhỏ nhất bằng tích của hai mẫu số chia cho số a.
Ví dụ 2:Quy đồng hai phân số:
5
3
và
12
8
MSCNN: 12 8 : 4 = 24
5
5 2 10 3 3 3 9
;
12 12 2 24 8 8 3 24
Vậy quy đồng mẫu số hai phân số
5
3
10
9
và được hai phân số
và
12
8
24 24
Trường hợp 3: Hai mẫu số chia hết cho nhau. Thì mẫu số chung nhỏ nhất chính
là mẫu số lớn.
Ví dụ 3: Quy đồng mẫu số hai phân số
2
7
và
3
9
MSCNN: 9
2 23 6
7
Giữ nguyên phân số
3 3 3 9
9
Vậy quy đồng mẫu số hai phân số
2
7
6
và được hai phân số và
3
9
9
Vì vậy, muốn quy đồng mẫu số các phân số đúng và nhanh HS phải nắm vững các
bước quy đồng mẫu số, phải biết vận dụng các trình tự đặc biệt để nhanh chóng tìm
ra mẫu số chung nhỏ nhất. Để làm được điều đó HS phải biết nhận dạng các phân
số cần quy đồng.
2.3.3. So sánh phân số
Dạng 1: So sánh phân số bằng cách quy đồng mẫu số – tử số.
a. Quy đồng mẫu số
Ví dụ 1: So sánh
Ta có:
1
1 3 3
=
=
2
23 6
1
1
và
2
3
34
1 1 2 2
=
3 3 2 6
Vì
3 2
1 1
> nên
>
6 6
2 3
b. Quy đồng tử số
Ví dụ 2:
2
3
và
5
4
Ta có:
2 23 6
=
5 5 3 15
3
3 2
6
=
=
4
4 2 18
Vì
6 6
2 3