Nội dung chính
Cách tính tổng n số hạng đầu tiên của cấp số cộng cực hay có lời giải
Cách tính tổng n số hạng đầu tiên của cấp số cộng cực hay có lời giải
A. Phương pháp giải
Quảng cáo
Cho cấp số cộng (un) có số hạng đầu là u1; công sai là d. Tổng n số hạng đầu tiên của cấp số cộng là:
+ Ngoài ra; ta còn có 1 cách tính khác là:
+ Chú ý: Cho dãy số (un) là cấp số cộng có công sai d. Cho x và y là hai số hạng của cấp số cộng. Khi đó từ x đến y có số số hạng là:
B. Ví dụ minh họa
Ví dụ 1: Cho cấp số cộng (un) có u5 = −10 và u15 = 60. Tổng của 20 số hạng đầu tiên của cấp số cộng là:
A. S20 = 560 B. S20 = 480
C. S20 = 570 D. S20 = 475
Hướng dẫn giải:
Ta có:
Theo giả thiết ta có:
Tổng 20 số hạng tiên phong của cấp số cộng là :
Chọn C .
Ví dụ 2: Cho cấp số cộng (un) thỏa mãn:
S = u5 + u6 + ..+ u30
A. – 1243 B. – 1235
C. – 1345 D. – 1450
Hướng dẫn giải:
* Từ giả thiết bài toán, ta có :
* Ta có : u5 ; u6 ; … ; u30 là cấp số cộng có 26 số hạng ; số hạng đầu là u5 = 2 + 4. ( – 3 ) = – 10 ; công sai d = – 3
=> Tổng
Chọn B .
Quảng cáo
Ví dụ 3: Cho dãy số (un) có d = –2; S8 = 72. Tính u1 ?
A. u1 = 16 B. u1 = – 16
C. u1 = 8 D. u1 = – 4
Hướng dẫn giải:
* Ta có :
* Lại có : u8 = u1 + 7 d => u8 – u1 = 7 d = – 14 ( 2 )
Từ (1) và (2) ta có hệ phương trình:
Chọn A .
Ví dụ 4: Cho dãy số (un) là một cấp số cộng có u1 = -1; d = 2 và Sn= 483. Tính số các số hạng của cấp số cộng?
A. n = 20 B. n = 21
C. n = 22 D. n = 23 .
Hướng dẫn giải:
Tổng của n số hạng tiên phong của cấp số cộng là
Chọn D .
Ví dụ 5: Cho (un) là cấp số cộng thỏa mãn:
. Tính tổng của số hạng đầu và công sai của cấp số cộng.
A. 63 B. 67
C. 75 D. 81
Hướng dẫn giải:
Theo giả thiết ta có :
=> Tổng của số hạng đầu và công sai của cấp số cộng là : 86 + ( − 19 ) = 67
Chọn B .
Quảng cáo
Ví dụ 6: Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính
Hướng dẫn giải:
Gọi d là công sai của cấp số đã cho .
Ta có :
Chọn D .
Ví dụ 7: Cho cấp số cộng (un) thỏa mãn
Hướng dẫn giải:
Theo giả thiết ta có :
Từ (1) suy ra :
Đặt
* Với
Với
Với
* Với t = 1 => d2 = 1 ⇔ d = ± 1
Với
Với
Vậy ứng với 4 trường hơp sẽ có 4 giá trị của u1 thỏa mãn nhu cầu .
Chọn D .
Ví dụ 8: Cho cấp số cộng (un) thỏa mãn: u4 + u8 + u11 + u17 = 100. Tính S19
A. 475 B. 500
C. 1000 D. 750
Hướng dẫn giải:
* Theo giả thiết ta có :
* Do đó:
Chọn A .
Ví dụ 9: Cho (un) là cấp số cộng thỏa mãn: u2 + u3 + u7 + u10 + u12 + u17 = 300. Tính u9 + u8
A. 50 B. 150
C. 75 D. 100
Hướng dẫn giải:
* Theo giả thiết ta có :
u2 + u3 + u7 + u10 + u12 + u17 = 300
⇔ u1 + d + u1 + 2 d + u1 + 6 d + u1 + 9 d + u1 + 11 d + u1 + 16 d = 300
⇔ 6 u1 + 45 d = 300 ⇔ 2 u1 + 15 d = 100
* Do đó;
Chọn D .
Ví dụ 10: Cho (un) là cấp số cộng và Sm = Sn với m ≠ n.Tính Sm+n
A. 0 B. Sm − Sn
C. Sn − Sm D. Sn + Sm
Hướng dẫn giải:
* Ta có:
Do Sm = Sn với m ≠ n nên ta có :
* Ta có:
Chọn A.
Ví dụ 11: Tính tổng sau: S = 2 + 4 + 6 + …+ (2n − 2) + 2n
Hướng dẫn giải:
Ta có dãy số 2, 4, 6, .., 2 n − 2, 2 n là cấp số cộng với công sai d = 2 và u1 = 2, số hạng tổng quát un = 2 + 2 ( n-1 ) = 2 n. Dãy số này có n số hạng .
Chọn B.
Ví dụ 12: Gọi
A. 34 B. 30,5
C. 325 D. 32,5
Hướng dẫn giải:
Có
Chọn D
Ví dụ 13: Cho cấp số cộng (un) có công sai d = 1 và u22 − 2u32 − u42 đạt giá trị lớn nhất. Tính tổng S20 của 20 số hạng đầu tiên của cấp số cộng đó.
A. 120 B. 125
C. 130 D. 135
Hướng dẫn giải:
Đặt a = u1 thì
với mọi a .
Dấu bằng xảy ra khi a + 3 = 0 ⇔ a = −3.
Suy ra u1 = − 3 .
Ta có
Chọn C .
C. Bài tập trắc nghiệm
Câu 1: Cho cấp số cộng: −4; −8; −12; −16…Tìm công sai của cấp số cộng và tổng của 10 số hạng đầu tiên?
A. 110 B. – 220
C. 220 D. – 110
Hiển thị đáp án
Đáp án: B
Ta có : − 16 − ( − 12 ) = − 12 − ( − 8 ) = − 8 − ( − 4 ) = − 4
Nên công sai d = − 4
Áp dụng công thức
Câu 2: Cho dãy số (un) có d = 1; S5 = 65. Tính u2?
A. 12 B. 13
C. 14 D. 10
Hiển thị đáp án
Đáp án: A
Ta có:
=> u1 + u5 = 26 ( 1 )
Lại có : u5 = u1 + 4 d = u1 + 4
=> u5 − u1 = 4 ( 2 )
Từ (1) và (2) ta có hệ phương trình:
Số hạng thứ hai của dãy số là : u2 = u1 + d = 11 + 1 = 12
Câu 3: Cho cấp số cộng (un) thỏa mãn
A. S = 2023 736 B. S = 2534134
C. S = 673044 D. S = 2198 650
Hiển thị đáp án
Đáp án: A
* Gọi d là công sai của cấp số cộng, theo giả thiết ta có :
Ta có công sai d = 3 và số hạng đầu u1 = 1 .
* Ta có các số hạng u1; u4; u7;…; u2011 lập thành một cấp số cộng gồm:
nên ta có:
Câu 4: Cho cấp số cộng (un) thỏa mãn:
A. − 565 B. − 530
C. − 652 D. − 285
Hiển thị đáp án
Đáp án: B
* Từ giả thiết bài toán, ta có :
Tổng của 20 số hạng đầu:
Câu 5: Cho cấp số cộng (un) thỏa mãn
S= u5 + u7 + ..+ u2011
A. S = 3028760 B. S = 3420198
C. S = 3034088 D. S = 3298701
Hiển thị đáp án
Đáp án: C
* Theo giả thiết ta có :
=> Số hạng thứ 5 là : u5 = u1 + 4 d = 1 + 4.3 = 13
* Ta có u5; u7..,u2011 lập thành cấp số cộng với công sai d’ = 2d = 6 và có
Câu 6: Cho cấp số cộng (un) thỏa mãn:
Hiển thị đáp án
Đáp án: A
Theo giả thiết ta có :
Vậy số hạng đầu tiên của cấp số cộng là:
Câu 7: Cho (un) là cấp số cộng thỏa mãn:
A. 10 B. 5
C. 8 D. 0
Hiển thị đáp án
Đáp án: D
Theo giả thiết ta có :
=> Số hạng thứ 5 của cấp số cộng là : u5 = u1 + 4 d = 0
Câu 8: Cho (un) là cấp số cộng thỏa mãn: u2 + u22 = 20. Tính S23?
A. 120 B. 230
C. 150 D. 200
Hiển thị đáp án
Đáp án: B
Theo giả thiết thì u2 + u22 = 20
⇔ u1 + d + u1 + 21 d = 20
⇔ 2 u1 + 22 d = 20
Lại có:
Câu 9: Cho (un) là cấp số cộng thỏa mãn: u21 + u59 = 30. Tính u20 + u59 + u158 + 3u1
A. 90 B. 120
C. 150 D. 180
Hiển thị đáp án
Đáp án: A
* Theo giả thiết ta có : u1 + u59 = 30
⇔ u1 + 20 d + u1 + 58 d = 30
⇔ 2 u1 + 78 d = 30
* Do đó ; u20 + u59 + u158 + 3 u1
= u1 + 19 d + u1 + 58 d + u1 + 157 d + 3 u1
= 6 u1 + 234 = 3. ( 2 u1 + 78 d ) = 3. 30 = 90 .
Câu 10: Cho (un) là cấp số cộng. Đặt Sn = m; Sn = m với (m ≠ n). Tính Sm+n
A. – m – n B.n + m
C. 2 n + 2 m D.n.m
Hiển thị đáp án
Đáp án: A
Ta có Sm = n nên
Tương tự do Sn = m nên : 2 nu1 + ( n2 − n ) d = 2 m
Từ ( 1 ) và ( 2 ) vế trừ vế ta được :
Do m ≠ n nên :
Mặt khác ta có:
Thay kết quả (*) vào biểu thức của Sm+n ta được:
Câu 11: Tính tổng sau: S = 1002 − 992 + 982 − 972 + ..+ 22 − 12
A. 5000 B. 5050
C. 5100 D. 5150
Hiển thị đáp án
Đáp án: B
Ta có :
S = 1002 – 992 + 982 – 972 + … + 22 – 12
⇔ S = ( 100 – 99 ). ( 100 + 99 ) + ( 98 – 97 ). ( 98 + 97 ) + … + ( 2-1 ) ( 2 + 1 )
⇔ S = 199 + 195 + 191 + … + 3
Ta có dãy số 199, 195, 191,.., 3 là cấp số cộng với công sai d = -4, số hạng đầu tiên u1 = 199 và có
Vậy tổng
Câu 12: Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức Sn = 4n − n2. Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M = 7 B. M = 4
C. M = – 1 D. M = 1
Hiển thị đáp án
Đáp án: D
Ta có :
Câu 13: Người ta trồng 3003 cây theo hình một tam giác như sau: hàng thứ nhất có 1 cây; hàng thứ 2 có 2 cây; hàng thứ 3 có 3 cây…hỏi có bao nhiêu hàng?
A. 76 B. 77
C. 78 D. 79
Hiển thị đáp án
Đáp án: B
Gọi số hàng cây là n .
Gọi số cây lần lượt trên các hàng là 1 ; 2 ; 3 .. ; n .
Đây là một cấp số cộng với số hạng đầu u1 = 1 ; d = 1 .
Ta có :
Vậy số hàng cần tìm là 77 .
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác :
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại thông minh, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng …. không tính tiền. Tải ngay ứng dụng trên Android và iOS .
Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi không tính tiền trên mạng xã hội facebook và youtube :
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
day-so-cap-so-cong-va-cap-so-nhan.jsp
Source: http://139.180.218.5
Category: tản mạn