Hình thoi được ứng dụng rất nhiều trong đời sống. Vậy tính chất hình thoi là gì ? Bài viết sau của GiaiNgo sẽ mạng lưới hệ thống kỹ năng và kiến thức cho bạn .

Chúng ta có thể dễ dàng nhận biết hình thoi bằng mắt thường bởi thói quen, đặc điểm riêng. Thế nhưng định nghĩa, tính chất hình thoi theo hình học thì không phải ai cũng nhớ rõ. Vậy tính chất hình thoi là gì? Cùng GiaiNgo tìm hiểu qua bài viết này nhé.

Hình thoi là gì?

Trước khi khám phá về tính chất hình thoi, tất cả chúng ta hãy đến với khái niệm hình thoi là gì cũng như tín hiệu nhận ra của nó nhé .

Hình thoi là gì?

Hình thoi là tứ giác có bốn cạnh bằng nhau. Điều này được định nghĩa trong hình học Euclide ( hình học Ơclit ). Ngoài ra, đây còn là hình bình hành đặc biệt quan trọng với hai cạnh kề bằng và hai đường chéo vuông góc với nhau .Ví dụ : Cho ABCD là hình thoi. Ta suy ra được AB = BC = CD = DA .

Dấu hiệu nhận biết hình thoi

Chúng ta hoàn toàn có thể nhận ra hình thoi qua những tín hiệu cơ bản sau :

Thông qua dấu hiệu của hình tứ giác

  • Tứ giác có bốn cạnh bằng nhau.
  • Tứ giác có 2 đường chéo là đường trung trực của nhau.
  • Hai đường chéo là đường phân giác của bốn góc.

Thông qua dấu hiệu của hình bình hành

  • Hình bình hành có hai cạnh kề bằng nhau.
  • Hình bình hành có hai đường chéo vuông góc.
  • Hình bình hành có một đường chéo là đường phân giác của một góc.

Tính chất hình thoi

Tính chất hình thoi có rất nhiều điểm đặc biệt quan trọng. Cụ thể về tính chất hình thoi đó là :

Các góc đối nhau bằng nhau.

Ví dụ : Trong hình thoi ABCD. Góc ADC bằng góc ABC, góc BCD bằng góc BAC .

Hai đường chéo vuông góc với nhau, cắt nhau tại trung điểm của mỗi đường

Ví dụ : Trong hình thoi ABCD, đường chéo AC vuông góc BD, cắt BD tại I. Suy ra IB = ID, IA = IC .

Hai đường chéo là đường phân giác của các góc trong hình thoi.

Ví dụ : Trong hình thoi ABCD. Góc DCI = góc BCI = góc DAI = góc BAI. Góc CDI = góc ADI = góc CBI = góc ABI .

Hình thoi có tất cả tính chất của hình bình hành.

Cụ thể, hình thoi có cả 3 tính chất của hình bình hành như sau :

  • Các cạnh đối sông song và bằng nhau.
  • Các góc đối bằng nhau.
  • Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Với những tính chất hình thoi trên, GiaiNgo kỳ vọng bạn đã có được những thông tin chính mình mong ước. Cùng theo dõi tiếp bài viết nhé !

Công thức liên quan đến hình thoi, tính chất hình thoi

Bên cạnh tính chất hình thoi thì 1 số ít công thức tương quan đến hình thoi cũng là một nội dung cực kỳ quan trọng. Đừng vội bỏ lỡ nếu bạn chưa khám phá nhé .

Công thức tính diện tích hình thoi

Diện tích hình thoi bằng một nửa tích hai đường chéo của hình thoi hoặc bằng tích của độ cao với cạnh đáy tương ứng .Công thức : S = 1/2 x ( d1 + d2 )Trong đó :

  • S là diện tích
  • d1, d2 là độ dài hai đường chéo.

Ví dụ : Cho hình thoi ABCD có độ dài hai đường chéo lần lượt là 3 cm và 5 cm. Hỏi diện tích quy hoạnh của hình thoi ABCD là bao nhiêu ?Hướng dẫn giải : Áp dụng công thức trên, ta có : S = 1/2 x ( 3 + 5 ) = 4 ( cm2 ) .

Công thức tính chu vi hình thoi

Chu vi hình thoi bằng tổng độ dài những cạnh cộng lại với nhau hoặc độ dài một cạnh nhân với 4 .Công thức : P = a x 4Trong đó :

  • P là chu vi
  • a là độ dài cạnh hình thoi.

Ví dụ : Cho hình thoi ABCD có cạnh là 3 cm. Hỏi chu vi của hình thoi ABCD là bao nhiêu ?Hướng dẫn giải : Áp dụng công thức trên, ta có : P = 3 x 4 = 12 ( cm ) .

Cách tính đường chéo đường thoi

Đường chéo hình thoi bằng diện tích quy hoạnh hình thoi nhân hai chia cho độ dài đường chéo hình thoi còn lại .Công thức : d1 = ( S x 2 ) / d2 hoặc d2 = ( S x 2 ) / d1Trong đó :

  • S là diện tích
  • d1, d2 là độ dài hai đường chéo.

Ví dụ : Cho hình thoi ABCD có diện tích quy hoạnh là 15 cm, một đường chéo có độ dài là 5 cm. Tính độ dài đường chéo còn lại của hình thoi ABCD .Hướng dẫn giải : Áp dụng công thức trên, ta có : d1 = ( 15 x 2 ) / 5 = 6 ( cm ) .

Một số bài tập về dấu hiệu nhận biết hình thoi và tính chất hình thoi

Bên trên bạn đọc đã được khám phá tính chất hình thoi cũng như tín hiệu nhận ra của nó. Ở phần này, GiaiNgo sẽ gợi ý cho bạn 1 số ít bài tập tương quan. Đừng vội bỏ lỡ nếu chưa tìm hiểu và khám phá nhé .

Bài 1: Chọn đáp án đúng

A. Hình thoi là hình tứ giác có những cạnh đối song song với nhauB. Hình thoi là hình tứ giác có 3 cạnh góc vuôngC. Hình thoi là hình tứ giác có 4 cạnh bằng với nhau

Hướng dẫn giải

Đáp án C

Bài 2: Cho hình thoi ABCD. Chứng minh:

a ) AC vuông góc BD .b ) AC là phân giác của góc A .

Hướng dẫn giải

Ta có : AB = BC ( Vì ABCD là hình thoi )Suy ra ∆ ABC cân tại B ( 1 )BO là trung tuyến ∆ ABC ( 2 )Từ ( 1 ) và ( 2 ) suy ra BO là đường trung tuyến nên BO cũng là đường cao và đường phân giác .Vậy BD vuông góc AC ( do BO là đường cao ) và BD đường phân giác của góc B .

Bài 3: Hãy chứng minh:

a ) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi .b ) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi .

Hướng dẫn giải bài tập liên quan đến tính chất hình thoi

a ) Hình bình hành nhận giao điểm hai đường chéo là tâm đối xứng. Mà hình thoi là một hình bình hành đặc biệt quan trọng. Do đó hình thoi cũng là một hình bình hành nên giao điểm của hai đường chéo hình thoi là tâm đối xứng của hình .b )Vì BD là đường trung trực của AC ( do BA = BC, DA = DC ) nên A đối xứng với C qua BD .Suy ra mọi điểm trên BD đều đối xứng qua chính đường thẳng BD .Bên cạnh đó, tâm O là tâm đối xứng. Mà O thuộc BD. Nên BD là trục đối xứng của hình thoi .Tương tự AC cũng là là trục đối xứng của hình thoi .Suy ra hai đường chéo của hình thoi là hai trục đối xứng của hình thoi .

Bài 4: Cho ∆ ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Đường thẳng AH cắt EF tại D, cắt BC tại G. Gọi M và N lần lượt là hình chiếu của G trên AB và AC. Chứng minh rằng tứ giác DNGM là hình thoi.

Hướng dẫn giải

Ta có: ∆ ABE = ∆ ACF (cạnh huyền, góc nhọn).
Suy ra: AE = AF và BE = CF. Vì H là trực tâm của ∆ ABC nên AH là đường cao, đồng thời là đường trung tuyến, từ đó GB = GC và DE = DF.

Xét ∆ EBC có GN / / BE ( cùng vuông góc với cạnh AC ) và GB = GC nên NE = NC .Tương tự ta được MF = MB .

Vì DM // GN và DM = GN (sử dụng định lí đường trung bình của tam giác) nên tứ giác DNGM là hình bình hành.

Mặt khác, DM = DN ( cùng bằng 50% của hai cạnh bằng nhau ) nên DNGM là hình thoi .Vừa rồi là những thông tin về tính chất hình thoi cũng như những bài tập nhận biết hình này. Hy vọng bài viết này giúp ích cho quy trình nghiên cứu và điều tra về tình chất hình thoi của bạn đọc. Hãy theo dõi GiaiNgo để biết thêm nhiều điều hữu dụng nhé .

Source: http://139.180.218.5
Category: tản mạn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *