Nội dung chính
Bội chung nhỏ nhất và các bước tìm BCNN Chia sẻ – lưu lại facebook Email
Bội chung nhỏ nhất và các bước tìm BCNN.
Khái niệm về BCNN:
Bội chung nhỏ nhấtcủa hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp bội chung .Nội dung chính
- Bội chung nhỏ nhất và các bước tìm BCNN Chia sẻ – lưu lại facebook Email
- Bội chung nhỏ nhất và các bước tìm BCNN.
- Khái niệm về BCNN:
- Cách tìm BCNN:
- BCNN là gì?
- Khi nào cần tìm BCNN của 2 số
- Những kiến thức trọng tâm về bội chung nhỏ nhất.
- Những dạng bài tập của bội chung nhỏ nhất.
- BÀI TẬP VẬN DỤNG
- Video liên quan
Thông báo: Giáo án, tài liệu miễn phí, và các giải đáp sự cố khi dạy online có tại Nhóm giáo viên 4.0 mọi người tham gia để tải tài liệu, giáo án, và kinh nghiệm giáo dục nhé!
Cách tìm BCNN:
- Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
Chú ý:
- Nếu hai số a, b là hai số nguyên tố cùng nhau thì BCNN là tích của a.b
- Nếu a là bội của b thì a cũng chính là BCNN của hai số a, b.
BCNN là gì?
Sau khi đã biết được thế nào là BCNN của hai số tự nhiên. Ta bắt đầu tìm hiểu về phương pháp và cách thức. Để tìm BCNN cần những điều kiện sau:
Bạn đang đọc: Bội số chung là gì
Các số đã được nghiên cứu và phân tích thành tích của những thừa số nguyên tố. Chọn ra những thừa số nguyên tố chung và riêng. Lập tích những thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Vậy tích đó là BCNN cần tìm. Kết quả của tích đó là một số ít. Đáp ứng được nhu yếu để được chọn làm BCNN của hai số. Để được chọn là bội chung nhỏ nhất của hai số. Thì số đó phải là số nhỏ nhất trong tập hợp bội chung. Có thể bạn chăm sóc : Toán 6 nâng cao dạng tìm hai chữ số tận cùngBội chính là số bị chia. Lấy bội chia cho số chia thì sẽ được phép tính chia hết, không dư. Khi mà cả hai số đều có một tập hợp số bị chia chung ta gọi đó là tập hợp bội chung. Số nhỏ nhất trong tập hợp bội chung đó. Được gọi là bội chung nhỏ nhất. Tập hợp những Bội của một số ít được tìm ra bằng cách dựa vào những nhân tử tạo thành số đó. Trước hết ta nghiên cứu và phân tích một số ít thành nhân tử. Sau đó chọn nhân tử chung tạo thành tích và tìm ra bội chung của hai số .
Khi nào cần tìm BCNN của 2 số
BCNN của hai số giúp ích rất nhiều trong việc giải những dạng bài tập. Dạng phân số, dạng lũy thừa, dạng số nguyên .. Các phân số số cần được rút gọn. Để giúp ích trong việc làm những phép tính giữa những phân số. Cộng, trừ, nhân, chia 2 phân số. Toán học gồm phần số và phần hình học. Đối với phần hình cần rèn luyện kiến thức và kỹ năng vẽ hình. Phán đoán những trường hợp hoàn toàn có thể xảy ra để tìm điều kiện kèm theo chứng tỏ .Trong việc xử lý những bài tập dạng rút gọn phân số. Việc tìm ra được BCNN giúp ích rất nhiều. Trong việc rút gọn thành phần và phần mẫu. Đưa phân số đó về dạng tối giản nhất để đơn thuần hơn trong việc triển khai phép tính. Ngoài việc xử lý những bài toán trong khoanh vùng phạm vi phân số. Còn có những bài toán về số nguyên, bài toán có lời văn và toán đố mẹo. Chúc những em học tập tốt ở phần tìm BCNN .
Những kiến thức trọng tâm về bội chung nhỏ nhất.
Bội chung nhỏ nhất là kiến thức các bạn được học ở chương trình Toán 6. Ngoài học về bội chung nhỏ nhất, trong Toán 6 các bạn cũng được học về ước chung lớn nhất. Đây là những dạng bài tập thường hay rất có trong đề thi học kì Toán 6 hoặc đề thi học sinh giỏi Toán 6. Chính vì vậy, các bạn cần học chắc phần nội dung này. Có thể bạn quan tâm: Có tất cả bao nhiêu cách viết số 34 dưới dạng tổng của hai số nguyên tố?
Kiến thức về bội chung nhỏ nhất này yên cầu những kiến thức và kỹ năng những bạn cần nhớ đó là những phép tính nhân, chia và những tín hiệu chia hết. Nó sẽ bổ trở rất nhiều cho những bạn rất nhiều trong quy trình học và làm bài tập. Và với những bài tập về bội chung nhỏ nhất sẽ có những bước làm được định sẵn. Các bạn chỉ cần vận dụng những bước này vào những bài cơ bản và cần được biến hoá nhiều hơn ở những bài tập nâng cao. Vậy những dạng bài tập của bội chung nhỏ nhất như thế nào ? Sau đây tôi sẽ tổng quan ở phần sau giúp những bạn hiểu rõ hơn .
Những dạng bài tập của bội chung nhỏ nhất.
Các bài tập về bội chung nhỏ nhất sẽ có từ cơ bản đến nâng cao. Sau đây tôi sẽ tổng quan về các dạng bài tập và phương pháp giải:
Dạng 1:
Dạng bài tìm bội chung nhỏ nhất của những số cho trước .Phương pháp giải :
- Thực hiện các bước tìm bội chung nhỏ nhất đã được nêu ở trên để tìm bội chung nhỏ nhất của hai hay nhiều số.
- Có thể nhẩm bội chung nhỏ nhất của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1, 2, 3, cho đến khi được kết quả là một số chia hết cho các số còn lại. (Bước này đòi hỏi các bạn phải nắm chắc được các kiến thức về phép tính nhân)
Dạng 2:
Dạng bài toán đưa về việc tìm bội chung nhỏ nhất của hai hay nhiều số .Phương pháp giải :
- Phân tích đề bài, dựa vào suy luận và kinh nghiệm làm bài để đưa việc tìm bội chung nhỏ nhất của hai hay nhiều số.Có thể bạn quan tâm: Tổng hợp toàn bộ kiến thức Toán lớp 6 đầy đủ nhất
Ví dụ :
Hai bạn An và Bách cùng học một trường nhưng ở hai lớp khác nhau. An cứ 10 ngày lại trực nhật, Bách cứ 12 ngày lại trực nhật. Lần đầu cả hai cùng trực nhật vào một ngày. Hỏi sau ít nhất bao nhiêu ngày thì hai bạn lại cùng trực nhật?
Lời giải :
Ta có số ngày An trực nhật lặp lại là một bội của 10
và số ngày Bách trực nhạt lặp lại là một bội của 12 .Suy ra khoảng chừng thời hạn hai bạn An và Bách trực nhật cùng nhau sẽ là bội chung của 10 và 12 .Do đó khoảng chừng thời hạn từ lần đầu tiên An và Bách cùng trực nhật đến những lần cùng trực nhật thứ hai là BCNN ( 10, 12 ) .Ta có : 10 = 2 * 5 và 12 = 2 * 2 * 3=> BCNN ( 10,12 ) = 2 * 2 * 3 * 5 = 60 .Vậy Sau tối thiểu 60 ngày hai bạn lại cùng trực nhật .
Dạng 3:
Dạng bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn nhu cầu điều kiện kèm theo cho trước .Phương pháp giải :
- B1: Phân tích đề bài, dựa vào suy luận và kinh nghiệm làm bài để đưa về việc tìm bội chung của hai hay nhiều số cho trước.
- B2: Tìm bội chung nhỏ nhất của các số đó.
- B3: Tìm các bội của bội chung nhỏ nhất tìm được ở B2.
- B4: Chọn các bội trong số đó là bội nhỏ nhất mà thỏa mãn điều kiện đã cho.
BÀI TẬP VẬN DỤNG
Ví dụ: Tìm BCNN và BC của:
a ) 40 và 52Ta có : 40 = 2 ³. 5, 52 = 2 ². 13 .=> BCNN ( 40, 52 ) = 2 ³. 5.13 = 520 .=> BC ( 40, 52 ) = 520 k ( k thuộc N * ) hoặc BC ( 40, 52 ) = { 520 ; 1040 ; 1560 ; }
b) 42, 70, 180
c ) 9, 10, 11Trên đây là những dạng bài tập cùng với giải pháp giải của từng giải pháp. Mời những bạn tìm hiểu thêm .
Sưu tầm: Thu Hoài 4.5 / 5 ( 8 bình chọn ) Chia sẻ – lưu lại facebook Email
Video liên quan
Source: http://139.180.218.5
Category: Thuật ngữ đời thường