Bài viết bao gồm đầy đủ lý thuyết về bội chung nhỏ nhất. Trong bài còn có các dạng bài tập áp dụng và lời giải chi tiết giúp các em có thể nắm chắc và hiểu sâu bài học.
Xem thêm : Bội chung nhỏ nhất
LÝ THUYẾT VÀ BÀI TẬP
Bạn đang đọc: LÝ THUYẾT VÀ BÀI TẬP BỘI CHUNG NHỎ NHẤT
BỘI CHUNG NHỎ NHẤT
A. Lý thuyết
1. Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.
Bội chung nhỏ nhất của các số a, b, c được kí hiệu là BCNN ( a, b, c ) .
2. Cách tìm BCNN:
Muốn tìm BCNN của hai hay nhiều số ta triển khai ba bước sau :Bước 1 : Phân tích mỗi số ra thừa số nguyên tố .Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng .Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ cao nhất của nó. Tích đó là BCNN phải tìm .Lưu ý :a ) Nếu các số đã cho nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó .b ) Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất ấy .
3. Cách tìm bội chung nhờ BCNN:
Đề tìm các bội chung của các số đã cho ta hoàn toàn có thể tìm các bội của BCNN của các số đó .
B. Bài tập
Bài 1. (SGK Toán 6 tập 1 trang 59)
Tìm BCNN của :a ) 60 và 280 ; b ) 84 và 108 ; c ) 13 và 15 .Giải bài :
\(\begin{array}{*{35}{l}}
a)60\text{ }=\text{ }{{2}^{3}}.3.5;\text{ }280\text{ }=\text{ }{{2}^{2}}.5.7. \\
BCNN\text{ }\left( 60,\text{ }280 \right)\text{ }=\text{ }{{2}^{3}}.3.5.7\text{ }=\text{ }840. \\
b)\text{ }84\text{ }=\text{ }{{2}^{2}}.3.7;\text{ }108\text{ }=\text{ }{{2}^{2}}{{.3}^{3}}. \\
BCNN\text{ }\left( 84,\text{ }108 \right)\text{ }=\text{ }{{2}^{2}}{{.3}^{3}}.7\text{ }=\text{ }756. \\
c)\text{ }S:\text{ }BCNN\text{ }\left( 13,\text{ }15 \right)\text{ }=\text{ }195. \\
\end{array}\)
Bài 2. (SGK Toán 6 tập 1 trang 59)
Tìm BCNN của :a ) 10, 12, 15 ; b ) 8, 9, 11 ; c ) 24, 40, 168 .
Giải bài :\ ( \ begin { array } { * { 20 } { l } } \ begin { array } { l } a ) { \ rm { } } 10 { \ rm { } } = { \ rm { } } 2.5,12 { \ rm { } } = { \ rm { } } { 2 ^ 2 }. 3,15 { \ rm { } } = { \ rm { } } 3.5. { \ rm { } } \ \ BCNN { \ rm { } } \ left ( { 10, { \ rm { } } 12, { \ rm { } } 15 } \ right ) { \ rm { } } = { \ rm { } } { 2 ^ 2 }. 3.5 { \ rm { } } = { \ rm { } } 60 ; \ end { array } \ \ { b ) { \ rm { } } BCNN { \ rm { } } \ left ( { 8, { \ rm { } } 9, { \ rm { } } 11 } \ right ) { \ rm { } } = { \ rm { } } 8.9.11 { \ rm { } } = { \ rm { } } 792 ; } \ \ { c ) { \ rm { } } 24 { \ rm { } } = { \ rm { } } { 2 ^ 3 }. 3, { \ rm { } } 40 { \ rm { } } = { \ rm { } } { 2 ^ 3 }. 5,168 { \ rm { } } = { \ rm { } } { 2 ^ 3 }. 3.7. } \ \ { BCNN { \ rm { } } \ left ( { 24, { \ rm { } } 40, { \ rm { } } 168 } \ right ) { \ rm { } } = { \ rm { } } { 2 ^ 3 }. 3.5.7 { \ rm { } } = { \ rm { } } 840. } \ end { array } \ )
Bài 3. (SGK Toán 6 tập 1 trang 59)
Hãy tính nhẩm BCNN của các số sau bằng cách nhân số lớn nhất lần lượt với 1, 2, 3, … cho đến khi được tác dụng là một số ít chia hết cho các số còn lại :a ) 30 và 150 ; b ) 40, 28, 140 ; c ) 100, 120, 200 .Giải bài :a ) BCNN ( 30, 150 ) = 150 vì 150 chia hết cho 30 ;b ) 140. 2 = 280 .Vì 280 chia hết cho cả 40 và 28 và 140 nên 280 = BCNN ( 40, 28, 140 ) .c ) 200 không chia hết cho 120 ; 200. 2 = 400 cũng không chia hết cho 120, nhưng 200. 3 = 600 chia hết cho cả 100 và 120 nên BCNN ( 100, 120, 200 ) = 600 .
Bài 4. (SGK Toán 6 tập 1 trang 59)
Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng \ ( a \ vdots 15 { \ rm { } } { \ rm {, } } a \ vdots 18. \ )Giải bài :Số tự nhiên a nhỏ nhất khác 0 chia hết cho cả 15 và 18, chính là BCNN ( 15, 18 ) .ĐS : 90 .
Bài 5. (SGK Toán 6 tập 1 trang 59)
Tìm các bội chung nhỏ hơn 500 của 30 và 45 .Giải bài :BCNN ( 30, 45 ) = 90. Do đó các bội chung nhỏ hơn 500 của 30 và 45 là 0, 90, 180, 270, 360, 450 .
Bài 6. (SGK Toán 6 tập 1 trang 59)
Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ hàng. Biết số học viên lớp đó trong khoảng chừng từ 35 đến 60. Tính số học viên lớp 6C .Giải bài :Vì khi học viên lớp 6C xếp hàng 2, hàng 3, hàng 4, hàng 8 đều đủ hàng có nghĩa là số học viên ấy là bội chung của 2, 3, 4, 8 .BCNN ( 2, 3, 4, 8 ) = 24. Mỗi bội của 24 cũng là một bội chung của 2, 3, 4, 8. Vì số học viên của lớp 6C trong khoảng chừng 35 đến 60 nên ta phải chọn bội của 24 thỏa mãn nhu cầu điều kiện kèm theo này. Đó là 24.2 = 48 .Vậy lớp 6C có 48 học viên .
Bài 7. (SGK Toán 6 tập 1 trang 60)
Cho bảng :
a | 6 | 150 | 28 | 50 |
b | 4 | |||
ƯCLN ( a, b ) | 2 |
|
||
BCNN ( a, b ) | 12 | |||
ƯCLN ( a, b ). BCNN ( a, b ) | 24 | |||
a. b | 24 |
a ) Điền vào các ô trống của bảng .b ) So sánh tích ƯCLN ( a, b ). BCNN ( a, b ) với tích a. b .Giải bài :
a | 6 | 150 | 28 | 50 |
b | 4 | 20 | 15 | 50 |
ƯCLN ( a, b ) | 2 | 10 | 1 | 50 |
BCNN ( a, b ) | 12 | 300 | 420 | 50 |
ƯCLN ( a, b ). BCNN ( a, b ) | 24 | 3000 | 420 | 2500 |
a. b | 24 | 3000 | 420 | 2500 |
Bài 8. (SGK Toán 6 tập 1 trang 60)
Tìm số tự nhiên x, biết rằng :\ ( x \ vdots 12, { \ rm { } } x \ vdots 21, { \ rm { } } x \ vdots 28 { \ rm { } } { \ rm {, } } 150 { \ rm { } } < { \ rm { } } x { \ rm { } } < { \ rm { } } 300. \ )Giải bài :Theo đầu bài x là một bội chung của 12, 21, 28, thỏa mãn nhu cầu điều kiện kèm theo 150 < x < 300. Ta có BCNN ( 12, 21, 28 ) = 84. Do đó bội chung thỏa mãn nhu cầu điều kiện kèm theo đã cho là 84.2 = 168 .
Bài 9. (SGK Toán 6 tập 1 trang 60)
Hai bạn An và Bách cùng học một trường nhưng ở hai lớp khác nhau. An cứ 10 ngày lại trực nhật, Bách cứ 12 ngày lại trực nhật. Lần đầu cả hai cùng trực nhật vào một ngày. Hỏi sau tối thiểu bao nhiêu ngày thì hai bạn lại cùng trực nhật ?
Giải bài :Số ngày để việc trực nhật của An lặp lại là một bội của 10, của Bách là một bội của 12. Do đó khoảng chừng thời hạn kể từ lần tiên phong cùng trực nhật đến những lần cùng trực nhật sau là những bội chung của 10 và 12. Vì thế khoảng chừng thời hạn kể từ lần tiên phong cùng trực nhật đến những lần cùng trực nhật thứ hai là BCNN ( 10, 12 ) .Ta có : \ ( 10 { \ rm { } } = { \ rm { } } 2.5 ; { \ rm { } } 12 { \ rm { } } = { \ rm { } } { 2 ^ 2 }. 3 { \ rm { } } = > { \ rm { } } BCNN { \ rm { } } \ left ( { 10, { \ rm { } } 12 } \ right ) { \ rm { } } = { \ rm { } } 60. \ )Vậy tối thiểu 60 ngày sau hai bạn mới lại cùng trực nhật .
Bài 10. (SGK Toán 6 tập 1 trang 60)
Hai đội công nhân nhận trồng 1 số ít cây như nhau. Mỗi công nhân đội I phải trồng 8 cây, mỗi công nhân đội II phải trồng 9 cây. Tính số cây mỗi đội phải trồng, biết rằng số cây đó trong khoảng chừng từ 100 đến 200 .
Giải bài:
Xem thêm: Tam giác.
Số cây mỗi đội phải trồng là bội chung của 8 và 9. BCNN ( 8, 9 ) = 72. Số cây mỗi đội phải trồng là bội của 72. Vì 72.2 = 144 thỏa mãn nhu cầu điều kiện kèm theo 100 < 144 < 200 nên số cây mỗi đội phải trồng là 144 cây .
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
Source: http://139.180.218.5
Category: tản mạn