Trong hướng dẫn về công thức tính chu vi và diện tích sau đây, mobitool.net sẽ cung cấp cho bạn đọc công thức tính diện tích chính xác nhất, kèm các ví dụ cụ thể để bạn dễ dàng nắm được kiến thức và áp dụng trong thực tế.

cong thuc tinh chu vi hinh thoi

Cách tính diện tích hình thoi, chu vi hình thoi, công thức tính

Công thức tính diện tích hình thoi, chu vi

1. Hình thoi là gì?

Hình thoi là tứ giác có 4 cạnh bên bằng nhau. Hình thoi cũng là hình bình hành có 2 cặp cạnh kề bằng nhau hoặc hình bình hành có 2 đường chéo vuông góc với nhau. Tham khảo trên Wikipedia bài viết về hình thoi để hiểu hơn, áp dụng được công thức hiệu quả.

Tính chất của hình thoi:

– Hình thoi có khá đầy đủ đặc thù của hình bình hành – Hai đường chéo vuông góc với nhau – Hai đường chéo là đường phân giác góc của hình thoi

2. Công thức tính diện tích hình thoi

Khái niệm tính diện tích hình thoi: Diện tích của hình thoi được tính bằng nửa tích (1/2) độ dài của hai đường chéo.

* Công thức tính dựa đường chéo

Cach tinh dien tich hinh thoi

Trong đó:+ d1 : đường chéo thứ nhất+ d2 : đường chéo thứ hai– Ví dụ: Có một tấm bìa hình thoi đo được hai đường chéo cắt nhau có chiều dài lần lượt là 6 cm và 8 cm. Hỏi diện tích của tấm bìa hình thoi đó bằng bao nhiêu?

Áp dụng theo cách tính diện tích hình thoi, ta có d1 = 6 cm và d2 = 8 cm. Ta đưa vào công thức và có hiệu quả như sau :

S = 1/2 x (d1 x d2) = 1/2 (6 x 8) = 1/2 x 48 = 24 cm2

* Công thức tính diện tích hình thoi dựa vào cạnh đáy và chiều cao

Cach tinh chu vi hinh thoi

Trong đó : – h : Chiều cao của hình thoi – a : Cạnh đáy

Ví dụ: Cho hình thoi ABCD, có cạnh AB = BC = CD = DA = 4 cm, chiều cao hình thoi bằng 3cm. Tính diện tích hình thoi.

Giải: Áp dụng theo công thức diện tích hình thoi, ta có h = 3cm, a = 4cm. Ta thay vào công thức và có kết quả như sau:

S = a x h = 3 x 4 = 12 cm2

* Công thức tính diện tích hình thoi dựa vào hệ thức trong tam giác (Nếu biết góc của hình thoi)

Cong thuc tinh chu vi, dien tich hinh thoi

Trong đó : a : cạnh hình thoi

Ví dụ: Cho hình thoi ABCD, có cạnh hình thoi = 4cm, góc A = 35 độ. Tính diện tích hình thoi ABCD.Giải: Áp dụng công thức, ta có a = 4, góc = 35 độ. Ta thay vào công thức như sau:

S = a2 x sinA = 42 x sin(35) = 9,176 (cm2)

Lưu ý:– Đơn vị diện tích của hình thoi là m2, cm2 …- Khi tính, bạn cần để ý xem đơn vị mà đề bài đưa ra đã cùng nhau chưa. Nếu chưa thì bạn cần đổi sang cùng một đơn vị trước khi làm.

3. Công thức tính chu vi hình thoi

Khái niệm tính chu vi hình thoi: Chu vi của hình thoi được tính bằng độ dài một cạnh nhân với 4. Số 4 ở đây được hiểu là 4 cạnh của hình thoi.

Công thức tính chu vi hình thoi:

Cong thuc tinh chu vi hinh thoi

Trong đó:+ P: Chu vi hình thoi+ a: Một cạnh bất kỳ của hình thoi- Ví dụ: Cho một hình thoi ABCD có độ dài các cạnh bằng nhau và bằng 7 cm. Hỏi chu vi của hình thoi này bằng bao nhiêu?

cong thuc tinh dien tich hinh thoi

Theo công thức tính chu vi hình thoi được ra mắt ở trên, ta có a = 7 cm. Như vậy chu vi hình thoi ABCD sẽ được tính như sau :

P (ABCD) = a x 4 = 7 x 4 = 28 cm

4. Công thức tính đường chéo hình thoi

Dựa vào những công thức tính chu vi hình thoi, diện tích hình thoi ở trên, tất cả chúng ta cũng hoàn toàn có thể thuận tiện tìm được công thức tính đường chéo hình thoi như sau :

* Tính đường chéo hình thoi khi biết diện tích, độ dài 1 đường chéo:Nếu đã biết diện tích hình thoi, độ dài đường chéo (d1), chúng ta sẽ dễ dàng tìm được 1 cạnh còn lại của hình thoi theo công thức sau: d2 = 2S/ d1

5. Bài tập liên quan tới diện tích, chu vi hình thoi

Với công thức tính chu vi hình thoi và diện tích hình thoi trên, chắc như đinh bạn đọc đã có cho mình những kỹ năng và kiến thức hữu dụng và quan trọng trong việc giải quyết và xử lý những câu hỏi, bài toán từ đơn thuần đến hóc búa trong bài tập hoặc đời sống. Tuy nhiên cũng cần quan tâm tới mối đối sánh tương quan giữa những thành phần trong công thức tính chu vi và diện tích hình thoi. Bởi sẽ có những bài toán cho trước đáp án và nhu yếu bạn vận dụng cách tính chu vi hình thoi và diện tích hình thoi để tìm ẩn số còn thiếu.

Thậm chí cũng có những dạng bài toán liên kết tới công thức tính chu vi và tính diện tích hình chữ nhật, tính diện tích hình tròn, áp dụng công thức tính diện tích hình tam giác, … để tìm các ẩn số khác có mối tương quan trong bài toán phức hợp. Do đó, bạn hãy cố gắng làm thật nhiều dạng toán liên quan đến việc áp dụng công thức tính chu vi và diện tích hình thoi để nâng cao khả năng giải toán nhé.

Hình vuông là một hình tứ giác đặc biệt quan trọng khi mà nó có 4 cạnh bằng nhau và 4 góc bằng nhau, ngoài những hình vuông vắn cũng mang vừa đủ đặc thù của hình chữ nhất, nắm rõ được công thức tính diện tích hình chữ nhật thì bạn cũng trọn vẹn hoàn toàn có thể thuận tiện tính được diện tích hình vuông vắn, chu vi hình vuông vắn. Tham khảo thêm về cách tính diện tích hình vuông vắn, chu vi hình vuông vắn, công thức tính đã được san sẻ trên mobitool.net nhé.

Source: http://139.180.218.5
Category: tản mạn

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *